Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Cell Rep ; 43(3): 113912, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38446659

ABSTRACT

In this study, we explore the dynamic process of colorectal cancer progression, emphasizing the evolution toward a more metastatic phenotype. The term "evolution" as used in this study specifically denotes the phenotypic transition toward a higher metastatic potency from well-formed glandular structures to collective invasion, ultimately resulting in the development of cancer cell buddings at the invasive front. Our findings highlight the spatial correlation of this evolution with tumor cell senescence, revealing distinct types of senescent tumor cells (types I and II) that play different roles in the overall cancer progression. Type I senescent tumor cells (p16INK4A+/CXCL12+/LAMC2-/MMP7-) are identified in the collective invasion region, whereas type II senescent tumor cells (p16INK4A+/CXCL12+/LAMC2+/MMP7+), representing the final evolved form, are prominently located in the partial-EMT region. Importantly, type II senescent tumor cells associate with local invasion and lymph node metastasis in colorectal cancer, potentially affecting patient prognosis.


Subject(s)
Colorectal Neoplasms , Matrix Metalloproteinase 7 , Humans , Matrix Metalloproteinase 7/genetics , Cellular Senescence/genetics , Phenotype , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
2.
Animals (Basel) ; 14(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338113

ABSTRACT

In animal farming, timely estrus detection and prediction of the best moment for insemination is crucial. Traditional sow estrus detection depends on the expertise of a farm attendant which can be inconsistent, time-consuming, and labor-intensive. Attempts and trials in developing and implementing technological tools to detect estrus have been explored by researchers. The objective of this review is to assess the automatic methods of estrus recognition in operation for sows and point out their strong and weak points to assist in developing new and improved detection systems. Real-time methods using body and vulvar temperature, posture recognition, and activity measurements show higher precision. Incorporating artificial intelligence with multiple estrus-related parameters is expected to enhance accuracy. Further development of new systems relies mostly upon the improved algorithm and accurate data provided. Future systems should be designed to minimize the misclassification rate, so better detection is achieved.

3.
Mol Oncol ; 18(1): 216-232, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37854019

ABSTRACT

Since therapy-induced senescence (TIS) can either support or inhibit cancer progression, identifying which types of chemotherapeutic agents can produce the strongest anti-tumor TIS is an important issue. Here, cyclin-dependent kinase4/6 inhibitors (CDK4/6i)-induced senescence was compared to the TIS induced by conventional DNA-damaging agents. Despite both types of agents eliciting a similar degree of senescence, we observed increased expression of the senescence-associated secretory phenotype (SASP) and ligands related to pro-tumor immunity (IL6, CXCL8, TGFß, CD274, and CEACAM1) and angiogenesis (VEGFA) mainly in TIS induced by DNA-damaging agents rather than by CDK4/6i. Additionally, although all agents increased the expression of anti-tumor immunomodulatory proteins related to antigen presentation (MHC-I, B2M) and T cell chemokines (CXCL9, 10, 11), CDK4/6i-induced senescent cells still maintained this expression at a similar or even higher intensity than cells treated with DNA-damaging agents, despite the absence of nuclear factor-kappa-B (NF-κB) and p53 activation. These data suggest that in contrast with DNA-damaging agents, which augment the pro-tumorigenic microenvironment via pro-inflammatory SASP, CDK4/6i can generate TIS only with antitumor immunomodulatory proteins.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , NF-kappa B/metabolism , Cellular Senescence/genetics , Tumor Microenvironment , Cyclin-Dependent Kinase 4
4.
Nat Commun ; 14(1): 7619, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993434

ABSTRACT

The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed "mid-old status" cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction.


Subject(s)
Aging , Cellular Senescence , Humans , Aged , Cellular Senescence/genetics , Aging/genetics , Epithelial Cells/physiology , Fibroblasts , Myocytes, Smooth Muscle
5.
J Pathol Transl Med ; 57(6): 305-314, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37926982

ABSTRACT

BACKGROUND: Cellular senescence is defined as an irreversible cell cycle arrest caused by various internal and external insults. While the metabolic dysfunction of senescent cells in normal tissue is relatively well-established, there is a lack of information regarding the metabolic features of senescent tumor cells. METHODS: Publicly available single-cell RNA-sequencing data from the GSE166555 and GSE178341 datasets were utilized to investigate the metabolic features of senescent tumor cells. To validate the single-cell RNA-sequencing data, we performed senescence-associated ß-galactosidase (SA-ß-Gal) staining to identify senescent tumor cells in fresh frozen colorectal cancer tissue. We also evaluated nicotinamide adenine dinucleotide dehydrogenase-tetrazolium reductase (NADH-TR) and succinate dehydrogenase (SDH) activity using enzyme histochemical methods and compared the staining with SA-ß-Gal staining. MTT assay was performed to reveal the complex 1 activity of the respiratory chain in in-vitro senescence model. RESULTS: Single-cell RNA-sequencing data revealed an upregulation in the activity of complexes 1 and 2 in oxidative phosphorylation, despite overall mitochondrial dysfunction in senescent tumor cells. Both SA-ß-Gal and enzyme histochemical staining using fresh frozen colorectal cancer tissues indicated a high correlation between SA-ß-Gal positivity and NADH-TR/SDH staining positivity. MTT assay showed that senescent colorectal cancer cells exhibit higher absorbance in 600 nm wavelength. CONCLUSIONS: Senescent tumor cells exhibit distinct metabolic features, characterized by upregulation of complexes 1 and 2 in the oxidative phosphorylation pathway. NADH-TR and SDH staining represent efficient methods for detecting senescent tumor cells in colorectal cancer.

6.
Animals (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835754

ABSTRACT

The late gestation period is crucial for fetal growth and development, impacting swine enterprises' profitability. Various nutritional strategies have been explored to enhance reproductive performance in sows, but findings regarding birth weight and litter size have been inconsistent. This study investigated the effects of increased feeding allowance during the late gestation period on the reproductive performance and farrowing behavior of primiparous and multiparous sows. A total of 28 sows (Landrace × Yorkshire) were used in this experiment, and fed 2.50 kg/d or 3.50 kg/d from 84 days of gestation until farrowing. Farrowing behavior was monitored using a DeepEyesTM M3SEN camera. The data were analyzed using the 2 × 2 factorial within Statistical Analysis System (SAS, 2011, Version 9.3) software. The results indicated that regardless of the parity number, sows fed a high diet exhibited a numerical increase in the total number of born piglets and a significant increase in milk yield (p = 0.014) and piglet birthweight (p = 0.023). Backfat thickness loss was significantly higher in sows with a 2.50 kg feeding allowance (p = 0.022), and the total number of piglets born, live births, and litter size were numerically higher in sows fed 3.50 kg per day. Moreover, stillborn piglets, mortality rate, and re-estrus days were numerically lower in sows with a high feeding allowance. The diet and parity did not individually affect the average duration of farrowing and farrowing intervals. However, the duration of postural changes in sows after farrowing was significantly reduced (p = 0.012). The principal component analysis revealed 81.40% and 80.70% differences upon partial least-squares discriminant analysis. Therefore, increasing feeding allowance during the late gestation period, regardless of parity, could positively influence sows' reproductive performance and piglets' growth performance during the lactation phase.

7.
Animals (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37889795

ABSTRACT

Porcine respiratory disease complex is an economically important disease in the swine industry. Early detection of the disease is crucial for immediate response to the disease at the farm level to prevent and minimize the potential damage that it may cause. In this paper, recent studies on the application of artificial intelligence (AI) in the early detection and monitoring of respiratory disease in swine have been reviewed. Most of the studies used coughing sounds as a feature of respiratory disease. The performance of different models and the methodologies used for cough recognition using AI were reviewed and compared. An AI technology available in the market was also reviewed. The device uses audio technology that can monitor and evaluate the herd's respiratory health status through cough-sound recognition and quantification. The device also has temperature and humidity sensors to monitor environmental conditions. It has an alarm system based on variations in coughing patterns and abrupt temperature changes. However, some limitations of the existing technology were identified. Substantial effort must be exerted to surmount the limitations to have a smarter AI technology for monitoring respiratory health status in swine.

8.
Heliyon ; 9(2): e13170, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36785830

ABSTRACT

Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated ß-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.

9.
Animals (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290245

ABSTRACT

This experiment evaluated the performance of a combined geothermal heat pump and solar system (GHPS). A GHPS heating system was installed at a pig house and a comparative study was carried out between the environmentally friendly renewable energy source (GHPS) and the traditional heating method using fossil fuels. The impact of both heating systems on production performance, housing environment, noxious gas emission, and energy efficiency were evaluated along with the GHPS system performance parameters such as the coefficient of performance (COP), inlet and outlet water temperature and efficiency of solar collector. The average temperature inside the pig house was significantly higher (p < 0.05) in the GHPS heating system. Similarly, the outflow temperature was increased significantly (p < 0.05) than the inflow temperature. The results of COP and efficiency of the solar system also indicated that the GHPS is an efficient heating system. The electricity consumption and carbon dioxide gas concentration were also reduced (p < 0.05) in the GHPS system. This study also predicts electricity consumption using an artificial intelligence (AI)-based model. The results showed that the proposed model justifies all the acceptance criteria in terms of the correlation coefficient, root mean square value and mean absolute error. The results of our experiment show that the GHPS system can be installed at a pig house for sustainable swine production as a renewable energy source.

10.
Biomed Pharmacother ; 153: 113501, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076511

ABSTRACT

Pinus koraiensis leaf (PKL) extract exerts antihyperlipidemic, antidiabetic, and anticancer effects; however, its anti-fatigue properties have not been elucidated to date. In this study, the anti-fatigue properties of PKL were evaluated by assessing the endurance of mice by a weight-loaded forced swimming (WLFS) and rotarod (RR) tests. Subsequently, various behavioral, biochemical, and physiological parameters were measured. Treatment with PKL decreased hepatic and muscular glycogen levels in mice subjected to WLFS and RR test compared to those in acute exercise-treated (AET) mice. Additionally, plasma levels of stress-related biochemical factors (lactate, lactate dehydrogenase, aminotransferase, aspartate aminotransferase, and blood urea nitrogen) decreased significantly (P < 0.05), whereas the levels of superoxide dismutase and glutathione peroxidase increased. Furthermore, PKL potentially improved mental fatigue by decreasing corticosterone and increasing serotonin levels. PKL increased the expression of phosphorylated cyclic adenosine-3',5'-monophosphate response element-binding protein and brain-derived neurotrophic factor in the hippocampus. Collectively, the anti-fatigue effects of PKL could be explained by its antioxidant activity, mediating effects on glycogen synthesis, and control over stress. In conclusion, the findings of the present study suggest that PKL is a potential nutraceutical for improving exercise performance and alleviating fatigue.


Subject(s)
Pinus , Animals , Disease Models, Animal , Glycogen/metabolism , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Superoxide Dismutase/metabolism , Swimming
11.
Theranostics ; 12(14): 6380-6394, 2022.
Article in English | MEDLINE | ID: mdl-36168637

ABSTRACT

Rationale: [18F]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) has been widely used as an imaging technique to measure interscapular brown adipose tissue (iBAT) activity. However, it is challenging to obtain iBAT-specific images using [18F]FDG-PET because increased uptake of [18F]FDG is observed in tumors, muscle, and inflamed tissues. Uncoupling protein 1 (UCP1) in the mitochondrial membrane, a well-known molecular marker of BAT, has been proposed as a useful BAT imaging marker. Recently, the UCP1 ThermoMouse was developed as a reporter mouse for monitoring UCP1 expression and investigating BAT activation. In addition, Translocator protein-18 kDa (TSPO) located in the outer mitochondrial membrane is also overexpressed in BAT, suggesting that TSPO-targeting PET has potential for iBAT imaging. However, there are no studies monitoring BAT using TSPO-targeting PET probes in the UCP1 ThermoMouse. Moreover, the non-invasive Cerenkov luminescence imaging (CLI) using Cerenkov radiation from the PET probe has been proposed as an alternative option for PET as it is less expensive and user-friendly. Therefore, we selected [18F]fm-PBR28-d 2 as a TSPO-targeting PET probe for iBAT imaging to evaluate the usefulness of CLI in the UCP1 ThermoMouse. Methods: UCP1 ThermoMouse was used to monitor UCP1 expression. Western blotting and immunohistochemistry were performed to measure the level of protein expression. [18F]fm-PBR28-d 2 and [18F]FDG were used as radioactive probes for iBAT imaging. PET images were acquired with SimPET, and optical images were acquired with IVIS 100. Results: UCP1 ThermoMouse showed that UCP1 and TSPO expressions were correlated in iBAT. In both PET and CLI, the TSPO-targeting probe [18F]fm-PBR28-d 2 was superior to [18F]FDG for acquiring iBAT images. The high molar activity of the probe was essential for CLI and PET imaging. We tested the feasibility of TSPO-targeting probe under cold exposure by imaging with TSPO-PET/CLI. Both signals of iBAT were clearly increased after cold stimulation. Under prolonged isoflurane anesthesia, TSPO-targeting images showed higher signals from iBAT in the short-term than in long-term groups. Conclusion: We demonstrated that TSPO-PET/CLI reflected UCP1 expression in iBAT imaging better than [18F]FDG-PET/CLI under the various conditions. Considering convenience and cost, TSPO-CLI could be used as an alternative TSPO-PET technique for iBAT imaging.


Subject(s)
Fluorodeoxyglucose F18 , Isoflurane , Adipose Tissue, Brown/diagnostic imaging , Adipose Tissue, Brown/metabolism , Animals , Fluorodeoxyglucose F18/metabolism , Isoflurane/metabolism , Luminescence , Mice , Positron-Emission Tomography/methods , Uncoupling Protein 1/metabolism
12.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012530

ABSTRACT

Immune checkpoint inhibitors (ICIs) are widely used in cancer immunotherapy, requiring effective methods for response monitoring. This study evaluated changes in 18F-2-fluoro-2-deoxy-D-glucose (FDG) and 18F-fluorothymidine (FLT) uptake by tumors following ICI treatment as potential imaging biomarkers in mice. Tumor uptakes of 18F-FDG and 18F-FLT were measured and compared between the ICI treatment and control groups. A combined imaging index of glucose-thymidine uptake ratio (GTR) was defined and compared between groups. In the ICI treatment group, tumor growth was effectively inhibited, and higher proportions of immune cells were observed. In the early phase, 18F-FDG uptake was higher in the treatment group, whereas 18F-FLT uptake was not different. There was no difference in 18F-FDG uptake between the two groups in the late phase. However, 18F-FLT uptake of the control group was markedly increased compared with the ICI treatment group. GTR was consistently higher in the ICI treatment group in the early and late phases. After ICI treatment, changes in tumor cell proliferation were observed with 18F-FLT, whereas 18F-FDG showed altered metabolism in both tumor and immune cells. A combination of 18F-FLT and 18F-FDG PET, such as GTR, is expected to serve as a potentially effective imaging biomarker for monitoring ICI treatment.


Subject(s)
Fluorodeoxyglucose F18 , Neoplasms , Animals , Biomarkers , Dideoxynucleosides , Fluorodeoxyglucose F18/therapeutic use , Glucose/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Positron-Emission Tomography/methods , Radiopharmaceuticals/therapeutic use , Thymidine/pharmacology
13.
Nucl Med Biol ; 114-115: 135-142, 2022.
Article in English | MEDLINE | ID: mdl-35501237

ABSTRACT

INTRODUCTION: Claudin-3 (CLDN3), a tight junction protein, regulates cell-to-cell interactions in epithelial or endothelial cell sheets. During tumorigenesis, epithelial cells are transformed, and tumor cells proliferate through out-of-plane division, resulting in external exposure of CLDN3. Since alterations of CLDN3 expression are associated with cancer progression and higher CLDN3 expression is observed in most ovarian cancers, we tested the feasibility of using a CLDN3-specific antibody as a novel imaging tracer. MATERIALS AND METHODS: After reducing the CLDN3-specific antibodies to expose the -SH groups, click chemistry was used to conjugate the radioactive isotope 111In or the fluorescent protein FNR648. Human ovarian cancer OVCAR-3 and glioblastoma U87MG cells were used as CLDN3-positive and -negative cells. Flow cytometry was used to determine the CLDN3 IgG1 monoclonal antibody binding to both cell lines. OVCAR-3 cells were injected subcutaneously into mice to establish a xenograft model. 111In-labeled CLDN3 antibodies (370 kBq/50 µL) were administered intravenously into mice. After 24 h, organs, including tumors, were excised and measured with a γ-counter. Images were acquired with the IVIS optical imaging system and SPECT/CT. RESULTS: The labeling efficiency of NOTA-111In and antibody-NOTA-111In was 98.52% and 100%, respectively. FNR648-labeled CLDN3 antibody bound to the cell surface of OVCAR-3 and U87MG with 83.4% and 5.7% specificity, respectively. In OVCAR-3 tumor xenografted mice, CLDN3 IgG1 antibody showed a 2.5-fold higher tumor uptake (20.4 ± 7.4% ID/g) than human IgG1 (8.8 ± 2.6% ID/g) at 24 h post injection. The CLDN3 antibody fluorescence signal in the tumor peaked at 24 h post injection. CONCLUSION: We have successfully conjugated a radioisotope and a fluorescent protein with CLDN3-specific antibodies and verified the specific binding of labeled antibodies to OVCAR-3 tumors in a mouse model. Our data suggested that CLDN3-specific human monoclonal antibodies could be used as a useful theranostic tracer.


Subject(s)
Ovarian Neoplasms , Humans , Animals , Mice , Female , Claudin-3 , Ovarian Neoplasms/pathology , Antibodies, Monoclonal , Apoptosis , Cell Line, Tumor , Immunoglobulin G
14.
Anim Nutr ; 8(1): 249-255, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34988306

ABSTRACT

This study was conducted to evaluate the supplementation of glutamic acid (Glu) to reduced protein diets on the performance of weanling pigs. One hundred and eighty crossbred weanling pigs ([Yorkshire × Landrace] × Duroc, 21 d old) having similar body weight (BW) of 6.45 kg were randomly allotted to 1 of 6 dietary treatments (5 pigs per pen [2 barrows and 3 gilts]; 6 pens per treatment) based on BW and sex during a 6-week trial. Dietary treatments consisted of positive control (PC) diet formulated to have 226.9, 205.6, and 188.8 g crude protein (CP) during phases 1, 2, and 3, respectively, and negative control (NC) diets with 20 g CP reduction from PC diets and addition of Glu with increasing levels, resulting in the calculated Lys-to-Glu ratios of 1:2.25, 1:2.30.1:2.35, 1:2.40, and 1:2.45, designated as NC, NC1, NC2, NC3, and NC4, respectively. The BW of pigs receiving PC diet was higher (P < 0.05) than those receiving NC diet at d 7, 21 and 42. A higher (P < 0.05) average daily gain (ADG) from d 1 to 7, 8 to 21, 22 to 42 and during the overall experiment period was observed in pigs fed PC than NC diet. Pigs fed NC diets including the graded level of Glu linearly increased (P < 0.05) BW at d 42, ADG and gain-to-feed ratio (G:F) during the overall experimental period. In addition, trends in linear increase in BW (P = 0.056) at d 7 and ADG from d 1 to 7 and d 22 to 42 (linear effect, P = 0.081, P = 0.058 respectively) were observed. A tendency in the linear increment of NH3 (P = 0.082) at d 21 and linear reduction in methyl mercaptans (P = 0.054) emission at d 42 was observed in pigs fed NC diets supplemented with graded level of Glu. In conclusion, supplementing the reduced protein diet with Glu enhanced the growth performance in weanling pigs suggesting that supplementation of Glu can compensate the reduction of 2% CP in the basal diets.

15.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 825-831, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34423869

ABSTRACT

A total of 150 growing pigs ([Landrace × Yorkshire] × Duroc) with an initial average body weight (BW) of 24.45 kg were used in a 6-week trial to estimate the optimum lysine to glutamic acid ratio in pigs fed low-protein diets supplemented with increasing level of synthetic glutamic acid (Glu). Pigs were randomly allotted to 5 dietary treatments consisting of either control diet (CON) formulated to have 157 g crude protein (CP) or negative control diets (NC, NC1, NC2 and NC3) with 20 g CP reduction and addition of Glu (1.1, 3.9, 6.8 and 9.6 g/kg feed respectively). Supplementing the increasing level of Glu to low CP diets did not exert any linear or quadratic responses in the growth performance parameters as well as nutrient digestibility. The serum creatinine concentration in pigs receiving CON diet showed trends (p = 0.063) in increment compared with pigs receiving NC diet. However, with the increase in the supplementation of Glu, there were no linear or quadratic responses on serum blood urea nitrogen (BUN) and creatinine concentrations. There was a tendency in the reduction (p = 0.088, p = 0.064) of backfat thickness and lean percentage, respectively, at week 3 and a trend in the reduction (p = 0.092) in lean percentage at week 6 in pigs fed NC diet compared with those fed CON diet. The increase in the supplemental level of Glu tended to show quadratic responses in the backfat thickness and lean percentage at week 3 and 6. In conclusion, the growth performance parameters as well as carcass traits with Lys: Glu ratio 1: 2.71 were very close with the mean values of CON diet indicating that 6.8 g Glu when supplemented to 2% CP reduced diet could achieve the comparable growth performance and carcass trait as that of standard basal diet.


Subject(s)
Animal Feed , Glutamic Acid , Animal Feed/analysis , Animals , Body Composition , Body Weight , Diet/veterinary , Diet, Protein-Restricted/veterinary , Dietary Supplements , Glutamic Acid/pharmacology , Lysine/pharmacology , Swine
16.
Bioengineering (Basel) ; 8(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805342

ABSTRACT

Dolastatin derivatives, represented by monomethylauristatin E (MMAE), have been translated in clinic with a form of antibody-drug conjugate; however, their potential in nanoparticle systems has not been well established due to the potential risk of immature release of extremely high cytotoxic dolastatin drugs during blood circulation. Herein, we rationally propose monomethylauristatin F (MMAF), a dolastatin-derived, loaded nanoparticle system composed of bombesin (BBN)-tethered ROS-responsive micelle system (BBN-PEG-PPADT) to achieve efficient anticancer therapy with targeted and efficient delivery of MMAF. The developed MMAF-loaded BBN-PEG-PPADT micelles (MMAF@BBN-PEG-PPADT) exhibited improved cellular uptake via interactions between BBN and gastrin-releasing peptide receptors on the cancer cells and the intracellular burst release of MMAF, owing to the ROS-responsive disruption, which allowed the efficient anticancer effects of MMAF in vitro. This study suggests the potential of nanoparticle systems in the delivery of dolastatin drugs.

17.
Adv Sci (Weinh) ; 8(4): 2002497, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643790

ABSTRACT

Cellular senescence can either support or inhibit cancer progression. Here, it is shown that intratumoral infiltration of CD8+ T cells is negatively associated with the proportion of senescent tumor cells in colorectal cancer (CRC). Gene expression analysis reveals increased expression of C-X-C motif chemokine ligand 12 (CXCL12) and colony stimulating factor 1 (CSF1) in senescent tumor cells. Senescent tumor cells inhibit CD8+ T cell infiltration by secreting a high concentration of CXCL12, which induces a loss of CXCR4 in T cells that result in impaired directional migration. CSF1 from senescent tumor cells enhance monocyte differentiation into M2 macrophages, which inhibit CD8+ T cell activation. Neutralization of CXCL12/CSF1 increases the effect of anti-PD1 antibody in allograft tumors. Furthermore, inhibition of CXCL12 from senescent tumor cells enhances T cell infiltration and results in reducing the number and size of tumors in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC. These findings suggest senescent tumor cells generate a cytokine barrier protecting nonsenescent tumor cells from immune attack and provide a new target for overcoming the immunotherapy resistance of CRC.

18.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105908

ABSTRACT

There has been considerable interest in the clinical use of exosomes as delivery vehicles for treatments as well as for promising diagnostic biomarkers, but the physiological distribution of exosomes must be further elucidated to validate their efficacy and safety. Here, we aimed to develop novel methods to monitor exosome biodistribution in vivo using positron emission tomography (PET) and optical imaging. Exosomes were isolated from cultured mouse breast cancer cells and labeled for PET and optical imaging. In mice, radiolabeled and fluorescently labeled exosomes were injected both via lymphatic and hematogenous metastatic routes. PET and fluorescence images were obtained and quantified. Radioactivity and fluorescence intensity of ex vivo organs were measured. PET signals from exosomes in the lymphatic metastatic route were observed in the draining sentinel lymph nodes. Immunohistochemistry revealed greater exosome uptake in brachial and axillary versus inguinal lymph nodes. Following administration through the hematogenous metastasis pathway, accumulation of exosomes was clearly observed in the lungs, liver, and spleen. Exosomes from tumor cells were successfully labeled with 64Cu (or 68Ga) and fluorescence and were visualized via PET and optical imaging, suggesting that this simultaneous and rapid labeling method could provide valuable information for further exosome translational research and clinical applications.


Subject(s)
Exosomes , Fluorescent Dyes/pharmacokinetics , Multimodal Imaging/methods , Animals , Carbocyanines/chemistry , Carbocyanines/pharmacokinetics , Copper Radioisotopes , Drug Administration Routes , Exosomes/chemistry , Female , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Gallium Radioisotopes , Heterocyclic Compounds, 1-Ring/chemistry , Injections, Intravenous , Isotope Labeling/methods , Mice, Inbred BALB C , Positron-Emission Tomography/methods , Tissue Distribution
19.
Anim Cells Syst (Seoul) ; 24(4): 189-196, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-33029295

ABSTRACT

Irreversible peripheral neurodegenerative diseases such as diabetic peripheral neuropathy are becoming increasingly common due to rising rates of diabetes mellitus; however, no effective therapeutic treatments have been developed. One of main causes of irreversible peripheral neurodegenerative diseases is dysfunction in Schwann cells, which are neuroglia unique to the peripheral nervous system (PNS). Because homeostasis of calcium (Ca2+) and magnesium (Mg2+) is essential for Schwann cell dynamics, the regulation of these cations is important for controlling peripheral nerve degeneration and regeneration. Transient receptor potential melastatin 7 (TRPM7) is a non-selective ion (Ca2+ and Mg2+) channel that is expressed in Schwann cells. In the present study, we demonstrated in an ex vivo culture system that inhibition of TRPM7 during peripheral nerve degeneration (Wallerian degeneration) suppressed dedifferentiable or degenerative features (trans-dedifferentiation and proliferation) and conserved a differentiable feature of Schwann cells. Our results indicate that TRPM7 could be very useful as a molecular target for irreversible peripheral neurodegenerative diseases, facilitating discovery of new therapeutic methods for improving human health.

20.
Theranostics ; 10(20): 9315-9331, 2020.
Article in English | MEDLINE | ID: mdl-32802194

ABSTRACT

The 18 kDa translocator protein (TSPO) has been proposed as a biomarker for the detection of neuroinflammation. Although various PET probes targeting TSPO have been developed, a highly selective probe for detecting TSPO is still needed because single nucleotide polymorphisms in the human TSPO gene greatly affect the binding affinity of TSPO ligands. Here, we describe the visualization of neuroinflammation with a multimodality imaging system using our recently developed TSPO-targeting radionuclide PET probe [18F]CB251, which is less affected by TSPO polymorphisms. Methods: To test the selectivity of [18F]CB251 for TSPO polymorphisms, 293FT cells expressing polymorphic TSPO were generated by introducing the coding sequences of wild-type (WT) and mutant (Alanine → Threonine at 147th Amino Acid; A147T) forms. Competitive inhibition assay was conducted with [3H]PK11195 and various TSPO ligands using membrane proteins isolated from 293FT cells expressing TSPO WT or mutant-A147T, representing high-affinity binder (HAB) or low-affinity binder (LAB), respectively. IC50 values of each ligand to [3H]PK11195 in HAB or LAB were measured and the ratio of IC50 values of each ligand to [3H]PK11195 in HAB to LAB was calculated, indicating the sensitivity of TSPO polymorphism. Cellular uptake of [18F]CB251 was measured with different TSPO polymorphisms, and phantom studies of [18F]CB251-PET using 293FT cells were performed. To test TSPO-specific cellular uptake of [18F]CB251, TSPO expression was regulated with pCMV-TSPO (or shTSPO)/eGFP vector. Intracranial lipopolysaccharide (LPS) treatment was used to induce regional inflammation in the mouse brain. Gadolinium (Gd)-DOTA MRI was used to monitor the disruption of the blood-brain barrier (BBB) and infiltration by immune cells. Infiltration of peripheral immune cells across the BBB, which exacerbates neuroinflammation to produce higher levels of neurotoxicity, was also monitored with bioluminescence imaging (BLI). Peripheral immune cells isolated from luciferase-expressing transgenic mice were transferred to syngeneic inflamed mice. Neuroinflammation was monitored with [18F]CB251-PET/MR and BLI. To evaluate the effects of anti-inflammatory agents on intracranial inflammation, an inflammatory cytokine inhibitor, 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid methyl ester (CDDO-Me) was administered in intracranial LPS challenged mice. Results: The ratio of IC50 values of [18F]CB251 in HAB to LAB indicated similar binding affinity to WT and mutant TSPO and was less affected by TSPO polymorphisms. [18F]CB251 was specific for TSPO, and its cellular uptake reflected the amount of TSPO. Higher [18F]CB251 uptake was also observed in activated immune cells. Simultaneous [18F]CB251-PET/MRI showed that [18F]CB251 radioactivity was co-registered with the MR signals in the same region of the brain of LPS-injected mice. Luciferase-expressing peripheral immune cells were located at the site of LPS-injected right striatum. Quantitative evaluation of the anti-inflammatory effect of CDDO-Me on neuroinflammation was successfully monitored with TSPO-targeting [18F]CB251-PET/MR and BLI. Conclusion: Our results indicate that [18F]CB251-PET has great potential for detecting neuroinflammation with higher TSPO selectivity regardless of polymorphisms. Our multimodal imaging system, [18F]CB251-PET/MRI, tested for evaluating the efficacy of anti-inflammatory agents in preclinical studies, might be an effective method to assess the severity and therapeutic response of neuroinflammation.


Subject(s)
Acetamides/administration & dosage , Brain/metabolism , Fluorine Radioisotopes/administration & dosage , Heterocyclic Compounds, 2-Ring/administration & dosage , Inflammation/genetics , Neurons/metabolism , Polymorphism, Genetic/genetics , Receptors, GABA/genetics , Animals , Blood-Brain Barrier/metabolism , Cell Line , Cytokines/genetics , Disease Models, Animal , Gadolinium/administration & dosage , HEK293 Cells , Humans , Luminescent Measurements/methods , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Positron-Emission Tomography/methods , RAW 264.7 Cells , Radiopharmaceuticals/administration & dosage , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...